Физические и химические свойства алкенов

Физические и химические свойства алкенов

Алкены — это непредельные углеводороды, которые имеют одну двойную связь между атомами углерода. Другое их название это олефины, оно связано с историей открытия этого класса соединений. В основном в природе эти вещества не встречаются, а синтезируются человеком для практических целей. В номенклатуре ИЮПАК название этих соединений формируется по тому же принципу, что и для алканов, только суффикс “ан” заменяется на “ен”.

...

Оглавление:

Строение алкенов

Два атома углерода, участвующих в образовании двойной связи, всегда находятся в sp2 гибридизации, и угол между ними равен 120 градусам. Двойная связь образована с помощью перекрывания π -π орбиталей, а оно не очень прочное, поэтому данную связь достаточно просто разорвать, что находит применение в химических свойствах веществ.

Изомерия

АлкеныПо сравнению с предельными, в этих углеводородах возможно больше видов изомерии, при том как пространственной, так и структурной. Структурная изомерия может также подразделяться на несколько видов.

Первый также существует и для алканов, и заключается в различном порядке соединения атомов углерода. Так изомерами могут быть пентен-2 и 2-метилбутен-2. А второй — это изменение положения двойной связи.

Пространственная изомерия в этих соединениях возможна благодаря появлению двойной связи. Она бывает двух видов — геометрической и оптической.

Геометрическая изомерия — один из самых распространенных в природе видов, при том практически всегда геометрические изомеры будут иметь кардинально разные физические и химические свойства. Различают цис и транс изомеры. У первых — заместители располагаются с одной стороны от кратной связи, а у транс изомеров они находятся в разных плоскостях.

Получение алкенов

АлкеныВпервые получены они были, как и много других веществ, совершенно случайно.

Немецкий химик и исследователь Бехер в конце 17 века изучал действие серной кислоты на этиловый спирт и понял, что получил неизвестный газ, который при этом является более реакционноспособным, чем метан.

Позже подобные исследования провели еще несколько ученых, они же и узнали, что данный газ при взаимодействии с хлором образует маслянистое вещество.

Поэтому первоначально этому классу соединений было присвоено название олефины, что переводится как маслородный. Но все же определить состав и строение данного соединения у ученых не получалось. Это произошло только почти спустя два века, в конце девятнадцатого столетия.

В настоящее время существует много способов получения алкенов.

Промышленные способы

Получение промышленными методами:

  1. Дегидрирование предельных углеводородов. Данная реакция возможна только при действии высоких температур (около 400 градусов) и катализаторов — либо оксида хрома 3, либо алюмоплатиновых катализаторов.
  2. Дегалогенирование дигалогеноалканов. Происходит только в присутствии цинка или магния, и при высоких температурах.
  3. Дегидрогалогенирование галогеноалканов. Проводится при помощи натриевых или калиевых солей органических кислот при повышенной температуре.
Важно! Данные способы получения алкенов не дают чистого продукта, результатом реакции будет смесь непредельных углеводородов. Преобладающее среди них соединение определяется с помощью правила Зайцева. Оно гласит, что водород отщепляется с наибольшей вероятностью от атома углерода у которого меньше всего связей с водородами.

Дегидратация спиртов. Может проводиться только при нагревании и в присутствии растворов сильных минеральных кислот, обладающих водоотнимающим свойством.

Гидрирование алкинов. Возможно только в присутствии паладиевых катализаторов.

Химические свойства алкенов

Алкены являются очень химически активными веществами. Во многом это объясняется благодаря наличию двойной связи. Самыми характерными реакциями для этого класса соединений являются электрофильное и радикальное присоединение.

  1. Галогенирование алкенов — относится к классическим реакциям электрофильного присоединения. Она происходит только в присутствии инертных органических растворителей, чаще всего это тетрахлорметан.
  2. Гидрогалогенирование. Присоединение этого типа осуществляется по правилу Марковникова. Ион водорода присоединяется к более гидрированному атому углерода возле двойной связи, и соответственно, ион галогенида присоединяется ко второму атому углерода. Это правило нарушается в присутствии перекисных соединений — эффект Харроша. Присоединение галогеноводорода происходит полностью обратно правилу Марковникова.
  3. Гидроборирование. Эта реакция имеет значительную практическую важность. Поэтому ученый, который ее открыл и изучил даже получил Нобелевскую премию. Данная реакция проводится в несколько ступеней, при этом присоединение иона бора происходит не по правилу Марковникова.
  4. Гидратация алкенов или присоединение воды. Данная реакция также протекает согласно правилу Марковникова. Гидроксид-ион присоединяется к наименее гидрированному атому углерода при двойной связи.
  5. Алкилирование — еще одна реакция часто применяемая в промышленности. Она заключается в присоединении предельных углеводородов к непредельным под воздействием низких температур и катализаторов, с целью увеличения атомной массы соединений. Катализатором чаще всего выступают сильные минеральные кислоты. Также эта реакция может протекать и по свободнорадикальному механизму.
  6. Полимеризация алкенов — еще одна нехарактерная для предельных углеводородов реакция. Она подразумевает соединение между собой многочисленных молекул с целью образования прочного соединения, отличающегося по своим физическим свойствам.

Алкеныn в данной реакции это количество молекул, вступивших в связь. Обязательным условием осуществления является кислая среда, повышенная температура и увеличенное давление.

Также для алкенов характерны и другие реакции электрофильного присоединения, которые не получили такого обширного практического распространения.

Например, реакция присоединения спиртов, с образованием простых эфиров.

Или присоединение хлорангидридов, с получением непредельных кетонов — реакция Кондакова.

Обратите внимание! Данная реакция возможна только в присутствии катализатора хлорида цинка.

Следующий крупный класс реакций характерный для алкенов это реакции радикального присоединения. Данные реакции возможны только при образовании свободных радикалов под воздействием высоких температур, облучения и других действий. Самая характерная реакция радикального присоединения это гидрирование с образованием предельных углеводородов. Она происходит исключительно под воздействием температур и в присутствии платинового катализатора.

Благодаря наличию двойной связи, для алкенов очень характерными являются различные реакции окисления.

  • Горение — классическая реакция окисления. Она хорошо идет без катализаторов. В зависимости от количества кислорода возможны разные конечные продукты: от углекислого газа и до углерода.
  • Окисление перманганатом калия в нейтральной среде. Продуктами являются многоатомные спирты и бурый осадок диоксида марганца. Данная реакция считается качественной для алкенов.
  • Также мягкое окисление может осуществляться пероксидом водорода, оксидом осмия 8, и другими окислителями в нейтральной среде. Для мягкого окисления алкенов характерен разрыв только одной связи, продуктом реакции, как правило, являются многоатомные спирты.
  • Также возможно и жесткое окисление, при котором происходит разрыв обеих связей и образуются кислоты или кетоны. Обязательным условием является кислая среда, чаще всего используют серную кислоту, так как другие кислоты могут также подвергаться окислению с образованием побочных продуктов.

Физические свойства алкенов

АлкеныГазами в нормальных условиях являются только этилен, пропен и бутен.

Начиная с пентена, и до гептодецена, все алкены находятся в жидком состоянии.

И все остальные являются твердыми веществами.

Температуры плавления и кипения пропорционально увеличиваются с ростом молекулярной массы, но могут меняться для изомеров.

Все алкены не растворяются в воде, но хорошо растворяются в инертных органических растворителях.

Применение алкенов

Алкены довольно широко используются в промышленности и применяются для синтеза большого количества веществ. Например, при помощи этилена синтезируют поливинилхлорид(ПВХ), стирол, этиленгликоль, этанол, полиэтилен, каучуки и множество других веществ. Наибольший объем пропилена используют для получения полипропилена.

Алкены — строение, свойства, применение

Изучаем химию — свойства алкенов, применение в промышленности

Вывод

В общем, можно точно сказать, что алкены благодаря своим химическим свойствам являются очень востребованными в промышленности. Они участвуют в производстве самых разнообразных пластмасс, каучуков и множества других веществ.

Вам помогла статья?
Голосовать ПРОТИВГолосовать ЗА
Пока оценок нет
Загрузка...

Отзывы и комментарии

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock detector