Двоичная система счисления и точный перевод чисел
Самой короткой системой счисления является двоичная. Она полностью основана на позиционной форме записи числа. Основной характеристикой считается принцип удвоения цифры при выполнении перехода от определённой позиции к последующей. Из одной системы счисления в другую можно осуществить перевод как при помощи специальной программы, так и вручную.
Историческое признание
Появление двоичной СС в истории связано с учёным математиком В.Г. Лейбницем. Именно он впервые заговорил о правилах выполнения операций с числовыми значениями данного рода. Но первоначально этот принцип остался невостребованным. Мировое признание и применение алгоритм получил на заре возникновения вычислительных машин.
Удобство и несложность выполнения операций привели к необходимости более детального изучения данного подраздела арифметики, который стал незаменимым при развитии компьютерной технологии с программным обеспечением. Впервые такие механизмы появились на немецком и французском рынках.
[warning]Внимание! Конкретную точку над превосходством двоичной системы по отношению десятичной, именно в данной отрасли, было поставлено в 1946 году и обосновано в статье А. Бекса, Х. Гольдстайна и Дж.Фон Неймана.[/warning]

Особенности двоичной арифметики
Вся двоичная СС основана на применении только двух символов, которые очень точно совпадают с особенностями цифровой схемы. Каждый из символов отвечает за определённое действие, которое зачастую подразумевает два состояния:
- наличие отверстия или его отсутствие, к примеру, перфокарты или перфоленты;
- на магнитных носителях отвечает за состояние намагничивания или размагничивания;
- по уровню сигнала, высокий или низкий.
В науке, в которой применяется СС, введена определённая терминология, суть ее состоит в следующем:
- Бит – двоичный разряд, который состоит из двух составляющих, несущих в себе определённый смысл. Размещённый слева, определяется как старший и является приоритетным, а справа – младшим, являющийся менее весомым.
- Байт – это единица, которая состоит из восьми битов.
Многие модули воспринимают и обрабатывают информацию порциями или словами. Каждое слово имеет разный вес и может состоять из 8-ми, 16-ти или 32-х битов.
Это интересно! Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения
Правила переводов из одной системы в другую
Одним из важнейших факторов арифметики машин является перевод из одной СС в другую. Поэтому обратим внимание на основные алгоритмы выполнения процесса, который покажет, как перевести число в двоичную систему.
Переводим десятичную систему в двоичную
Первоначально обратимся к вопросу, как осуществить перевод системы из десятичной в двоичную систему счисления. Для этого существует правило перевода из десятичных чисел в двоичный код, которое подразумевает математические действия.
Необходимо число, записанное в десятичном виде разделить на 2. Деление выполнять до тех пор, пока в частном не останется единица. Если необходима двоичная система счисления перевод осуществляется так:
186:2=93 (ост. 0)
93:2=46 (ост. 1)
46:2=23 (ост. 0)
23:2=11 (ост. 1)
11:2=5 (ост. 1)
5:2=2 (ост.1)
2:2=1
После того, как процесс деления закончен, то единицу в частном и все остатки записываем последовательно в обратном делению порядке. То есть, 18610=1111010. Правило перевода десятичных чисел в СС надо соблюдать всегда.

Это интересно! Изучение основных правил умножения: как из неправильной дроби сделать правильную
Перевод из десятичной СС в восьмеричную
Аналогичный процесс проводится при переводе из десятичной СС в восьмеричную. Его ещё называют «правилом замещения». Если в предыдущем примере деление данных осуществлялось на 2, то здесь необходимо делить на 8. Алгоритм перевода числа X10 в восьмеричную состоит из следующих шагов:
- Число X10 начинают делить на 8. Полученное частное берём для следующего деления, а остаток записывается, как бит младшего порядка.
- Продолжаем деление до тех пор, пока не получим в результат частного равного нулю или остаток, который по своему значению меньше восьми. При этом все остатки записываем, как младшие порядки бита.
К примеру, необходимо перевести число 160110 в восьмеричное.
1601:8=200 (ост. 1)
200:8=25 (ост. 0)
25:8=3 (ост.1)
Итак, получим: 161010=31018.

Это интересно! Как определить определенные интегралы от нуля, константы и с доказательством
Записываем десятичное число шестнадцатеричным
Перевод из десятичной в шестнадцатиричную СС осуществляется аналогично с использованием системы замещения. Но кроме цифр применяют ещё и буквы латинского алфавита A, B, C, D, E, F. Где A обозначает остаток 10, а F остаток 15. Десятичное число делят на 16. К примеру, переводим 10710 в шестнадцатеричную:
107:16=6 (ост. 11 – заменяем В)
6 – меньше, чем шестнадцать. Деление прекращаем и записываем 10710=6В16.
Переходим из другой системы в двоичную
Следующий вопрос, как преобразовать из восьмеричной в двоичную запись числа. Перевод чисел из любой системы в двоичную выполняется достаточно просто. Помощником в этом деле выступает таблица для систем счисления.
[stop]Важно! Сам принцип основывается на замене набора цифр одной системы на числа другой. Пример перевода 247388=1010011101122[/stop]
Аналогичный ответ имеет вопрос, как перевести из шестнадцатиричной в двоичную. Необходимо преобразовать каждый символ числа А16 в набор символов двоичного числа. Выполнить это можно посредством представленной таблицы.
Шестнадцатеричная | Двоичная |
0 | 0000 |
1 | 0001 |
2 | 0010 |
3 | 0011 |
4 | 0100 |
5 | 0101 |
6 | 0110 |
7 | 0111 |
8 | 1000 |
9 | 1001 |
A | 1010 |
B | 1011 |
C | 1100 |
D | 1101 |
E | 1110 |
F | 1111 |
К примеру, число А2316=1010000100112.
Это интересно! Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства
Перевод чисел в восьмеричную и шестнадцатеричную систему счисления и обратно:
Перевод между двоичной, восьмеричной, и шестнадцатеричной системой счисления:
Итог
Кроме всех перечисленных систем, существует и четвертичная система, основанием которой является цифра 4. Записывается она посредством четырёх символов 0, 1, 2, 3. К примеру 1010=224, а 1510=334.
Это интересно! Что такое экстремумы функции: критические точки максимума и минимума