Первый признак равенства треугольников: доказательство

Первый признак равенства треугольников: доказательство

С далеких времен и по сей день поиск признаков равенства фигур считается базовой задачей, которая является основой основ геометрии; сотни теорем доказываются с использованием признаков равенства. Умение доказывать равенство и подобие фигур — важная задача во всех сферах строительства.

...

Оглавление:

Применение навыка на практике

Первый признак равенства треугольниковПредположим, что у нас есть фигура, начерченная на листе бумаги. При этом у нас есть линейка и транспортир, с помощью которых мы можем замерять длины отрезков и углы между ними. Как перенести на второй лист бумаги фигуру таких же размеров или увеличить ее масштаб в два раза.

Мы знаем, что треугольник — это фигура, состоящая из трех отрезков, называемых сторонами, образующими углы. Таким образом, существует шесть параметров — три стороны и три угла, которые определяют эту фигуру.

Однако, замерив величину всех трех сторон и углов, перенести данную фигуру на другую поверхность окажется непростой задачей. Кроме того, есть смысл задать вопрос: а не достаточно ли будет знания параметров двух сторон и одного угла, или всего лишь трех сторон.

Замерив длину двух сторон и угол между ними, затем отложим этот угол на новом листке бумаги, так мы сможем полностью воссоздать треугольник. Давайте разберемся, как это сделать, научимся доказывать признаки, по которым их можно считать одинаковыми, и определимся с тем, какое минимальное число параметров достаточно знать, чтобы получить уверенность в том, что треугольники одинаковы.

Важно ! Фигуры называются одинаковыми, если отрезки, образующие их стороны, и углы равны между собой. Подобными называются те фигуры, у которых стороны и углы пропорциональны. Таким образом, равенство — это подобие с коэффициентом пропорциональности 1.

Какие существуют признаки равенства треугольников, дадим их определение:

  • первый признак равенства: два треугольника можно считать одинаковыми, если равны две их стороны, а также угол между ними.
  • второй признак равенства треугольников: два треугольника будут одинаковыми, если одинаковы два угла, а также соответствующая сторона между ними.
  • третий признак равенства треугольников: треугольники можно считать одинаковыми, когда все их стороны имеют равную длину.

Как доказать, что треугольники равны. Приведем доказательство равенства треугольников.

Доказательство 1 признака

Долгое время среди первых математиков данный признак считался аксиомой, однако, как оказалось, его можно геометрически доказать, опираясь на более базовые аксиомы.

Рассмотрим два треугольника — KMN и K1M1N1. Сторона КМ имеет такую же длину как и K1M1, а KN = K1N1. А угол MKN равен углам KMN и M1K1N1.

Первый признак равенства треугольников

Если рассматривать KM и K1M1, KN и K1N1 как два луча, которые выходят из одной точки, то можно сказать, что между этими парами лучей одинаковые углы (это задано условием теоремы). Произведем параллельный перенос лучей K1M1 и K1N1 из точки K1 в точку К. Вследствие этого переноса лучи K1M1 и K1N1 полностью совпадут. Отложим на луче K1M1 отрезок длиной КМ, берущий свое начало в точке К. Поскольку по условию полученный отрезок и будет равен отрезку K1M1 то точки М и M1 совпадают. Аналогично и с отрезками KN и K1N1. Таким образом, перенося K1M1N1 так, что точки K1 и К совпадают, а две стороны накладываются, получаем полное совпадение и самих фигур.

Важно! В интернете встречаются доказательства равенства треугольников по двум сторонам и углу при помощи алгебраических и тригонометрических тождеств с численными значениями сторон и углов. Однако исторически и математически данная теорема была сформулирована задолго до алгебры и раньше, чем тригонометрия. Для доказательства этого признака теоремы использовать что-либо, кроме базовых аксиом, некорректно.

Доказательство 2 признака

Докажем второй признак равенства по двум углам и стороне, основываясь на первом.

Первый признак равенства треугольников
Доказательство 2 признака

Рассмотрим KMN и PRS. К равен Р, N равен S. Сторона КN имеет такую же длину, как и РS. Необходимо доказать, что KMN и PRS — одинаковы.

Отразим точку М относительно луча КN. Полученную точку назовем L. При этом длина стороны КМ = КL. NKL равен PRS. KNL равен RSP.

Поскольку сумма углов равна 180 градусов, то KLN равен PRS, а значит PRS и KLN- одинаковые (подобные) по обеим сторонам и углу, согласно первому признаку.

Но, так как KNL равен KMN, то KMN и PRS — две одинаковые фигуры.

Это интересно! Чему равна и как найти площадь равностороннего треугольника

Доказательство 3 признака

Как установить, что треугольники равны. Это прямо вытекает из доказательства второго признака.

Длина KN = PS. Поскольку К = Р, N = S, KL=KM, при этом КN = KS, MN=ML, то:

Первый признак равенства треугольников

Это означает, что обе фигуры являются подобными друг другу. Но так как их стороны одинаковы, то и они также равны.

Из признаков равенства и подобия вытекает множество следствий. Одно из них заключается в том, что для того, чтобы определить, равны два треугольника или нет, необходимо знать их свойства, одинаковы ли:

  • все три стороны;
  • обе стороны и угол между ними;
  • оба угла и сторона между ними.
Первый признак равенства треугольников
Использование признака равенства треугольников для решения задач

Это интересно! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

Следствия первого признака

В ходе доказательства можно прийти к ряду интересных и полезных следствий.

  1. Параллелограмм. Тот факт, что точка пересечения диагоналей параллелограмма делит их на две одинаковые части — следствие признаков равенства и вполне поддается доказательству.Стороны дополнительного треугольника (при зеркальном построении, как в доказательствах, которые мы выполняли) — параллельны сторонам главного (стороны параллелограмма).
  2. Если есть два прямоугольных треугольника, у которых одинаковые острые углы, то они подобны. Если при этом катет первого равен катету второго, то они равны. Понять это довольно легко — у любых прямоугольных треугольников есть прямой угол. Поэтому признаки равенства для них более просты.
  3. Два треугольника с прямыми углами, у которых два катета имеют одинаковую длину, можно считать одинаковыми. Это связано с тем, что между двумя катетами угол всегда равен 90 градусов. Поэтому по первому признаку (по двум сторонам и углу между ними) все треугольники с прямыми углами и одинаковыми катетами — равны.
  4. Если есть два прямоугольных треугольника, и у них один катет и гипотенуза равны, значит и треугольники одинаковы.

Докажем эту простую теорему.

Есть два прямоугольных треугольника. У одного стороны a, b, c, где с — гипотенуза; a, b — катеты. У второго стороны n, m, l, где l — гипотенуза; m, n — катеты.

По теореме Пифагора один из катетов равен:

Первый признак равенства треугольников;

Первый признак равенства треугольников.

Таким образом, если n = a, l = с (равенство катетов и гипотенуз), соответственно и вторые катеты будут равны. Фигуры, соответственно, будут равны по третьему признаку (по трем сторонам).

Отметим еще одно важное следствие. Если есть два равных треугольника, и они подобны с коэффициентом подобия k, то есть попарные отношения всех их сторон равны k, то отношение их площадей равно k2 .

Первый признак равенства треугольников. Видеоурок по геометрии 7 класс

Геометрия 7 Первый признак равенства треугольников

Вывод

Рассмотренная нами тема поможет любому ученику лучше разобраться в базовых геометрических понятиях и повысить свои навыки в интереснейшем мире математики.

Вам помогла статья?
Голосовать ПРОТИВГолосовать ЗА
Пока оценок нет
Загрузка...

Отзывы и комментарии

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock detector