Обратная теорема о трех перпендикулярах

Обратная теорема о трех перпендикулярах

В этой статье рассмотрена одна из самых важных теорем в стереометрии – теорема о трех перпендикулярах. Важность ее заключается в том, что прежде чем переходить к решению сложных фигур – сфер, пирамид и параллелепипедов, необходимо владеть основными законами, возникающими при взаимодействиях прямых в пространстве.

...
Оглавление:

Базовые понятия

Для понимания сути теоремы нужно владеть базовыми понятиями планиметрии.

Сплошь и рядом в геометрии используется понятие угол. Измеряются они в градусах или радианах. Радианы – незаменимая размерность в тригонометрии, градусы более привычны нам, потому что пришли из реальной жизни.

0 град., 90 град., 180 град. – три типа углов, которые понятны нам не только геометрически, но и интуитивно. 90 град. (или прямой) – самый, вероятно, популярный тип, потому что активно встречается в повседневной жизни.

Перпендикулярностью назовем такое соотношения между фигурами (прямыми, плоскостями и т.д.), при котором угол между ними составляет 90 градусов.

Внимание! Перпендикуляр – это прямая, которая составляет угол 90 град. с другими прямыми или плоскостями.

Изучим терминологию на реальных примерах:

теорема о трёх перпендикулярах

Имеется плоскость α. С – точка, не лежащая на плоскости. СВ – отрезок, опущенный из точки С на плоскость α и составляющий с плоскостью прямой угол. Таким образом СВ ⊥ α. Обозначим наклонную, т.е. луч, выходящий тоже из С. Он пересекает α в точке А. АВС – прямоугольный треугольник, поскольку СВА равен 90 град.

Теорема

Несмотря на всю свою простоту, теорема о трех перпендикулярах связывает между собой углы, находящиеся в различных плоскостях, поэтому данный закон считается довольно глобальным в геометрии.

теорема о трёх перпендикулярах

Картина такая же, как в предыдущем разделе: есть α, точка А, лежащая за пределами α. Из этой точки опущен перпендикуляр, имеющий основание В, также проведен отрезок АС (который является наклонной).

Вот как звучит формулировка теоремы о трех перпендикулярах:

Если через основание проведенной наклонной проходит прямая и она образует угол 90 град. с проекцией, то она образует такой же угол с ее наклонной.

Таким образом, теорема гласит, что, если между с и ВС – прямой угол, то он прямой между с и АС.

Докажем данную теорему:

  • ВА – отрезок,составляющий с плоскостью α угол 90 град.;
  • СА – отрезок прямой, являющейся наклонной;
  • с – проходит через точку С и образует прямой угол с отрезком ВС.

Проводим КС || ВА. Значит, он составляет угол 90 град. по отношению к α. Это означает, что он составляет углы 90 град. со всеми прямыми, находящимися в α. Между КС и с — угол 90 градусов, поскольку она тоже принадлежит α.

Любые два отрезка, которые параллельны друг другу, задают плоскость. Поэтому существует плоскость β через отрезки ВА и КС. Прямая с ⊥ СВ и с ⊥ КС, т.е. она составляет угол 90 град. с каждой прямой, принадлежащей β, отрезку СА в том числе.

Нам удалось доказать теорему о трех перпендикулярах.

Обратная теорема о трех перпендикулярах

Приведем точную формулировку обратной теоремы.

теорема о трёх перпендикулярах

Если через основание проведенной наклонной проходит прямая и она составляет с наклонной угол 90 градусов, то она образовывает такой же угол с ее проекцией.

Таким образом, теорема гласит, что, если между с и АС – прямой угол, то он прямой между с и ВС.

Докажем данную теорему:

  • ВА – отрезок, составляющий с плоскостью α угол 90 град.;
  • СА – отрезок прямой, являющейся наклонной;
  • с – проходит через точку С и имеющая прямой угол с отрезком ВС.

Проводим КС || ВА. Значит, он составляет угол 90 градусов по отношению к α. Это означает, что он составляет углы 90 градусов со всеми прямыми, находящимися в α. Между КС и с – угол 90 град., поскольку она тоже принадлежит α.

Любые два отрезка, которые параллельны друг другу, задают плоскость. Поэтому существует плоскость β через отрезки ВА и КС. Прямая с ⊥ СВ и с ⊥ КС, т.е. она составляет угол 90 градусов с каждой прямой, принадлежащей β, отрезку СА в том числе.

Применение теоремы

Мы привели вам доказательство теоремы о трех перпендикулярах и обратной теоремы. Как вы могли убедиться, для доказательства нам понадобились самые простейшие и базовые аксиомы стереометрии. Сама теорема о трех перпендикулярах имеет крайне широкое применение в решении различных задач.

Внимание! Не существует такой математической задачи, которая не имеет аналогий в реальной, повседневной жизни. Когда речь заходит о геометрии, особенно о стереометрии, то это становится заметным еще больше.

Для того чтобы показать вам широту применения доказанной нами теоремы, рассмотрим две интересные задачи с ее применением.

Задача 1

В треугольник вписана окружность. Через центр этой окружности О проведена прямая SO, составляющая с плоскостью треугольника угол 90 градусов. Правильно ли утверждение, что точка S удалена от сторон на одинаковое расстояние?

Решение:

Поскольку радиус окружности ОА составляет со стороной треугольника (как радиус и касательная к окружности) 90 град., то по теореме о трех перпендикулярах SA составляет со стороной треугольника угол 90 град.

теорема о трёх перпендикулярах

Проанализируем SAO. Поскольку SO составляет с плоскостью, в которой расположен треугольник, угол 90 град., то SAO является прямоугольным треугольником, к которому можно применить теорему Пифагора:

теорема о трёх перпендикулярах,

где r = АО = ВО = СО — радиус окружности.

Рассматривая SOB и SOC и применяя к ним те же самые вычисления, получаем их гипотенузы:

теорема о трёх перпендикулярах и

теорема о трёх перпендикулярах

Таким образом, видим, что SA=SB=SС. Это означает, что да, точка S удалена от сторон на одинаковое расстояние.

Задача 2

Есть прямоугольный треугольник АВС. Высота СН равна 9,6. Из угла С (90 град.) к плоскости треугольника проведен отрезок СМ, который образует перпендикулярность с плоскостью. Его длина равна 28. Найдите кратчайшую длину отрезка между М и гипотенузой.

Ознакомимся с решением:

СН является высотой, МН можно рассматривать как наклонную.

теорема о трёх перпендикулярах

Тогда СН является не только высотой треугольника, но и проекцией МН на плоскость треугольника.

Поскольку между СН и АВ угол 90 град., то по рассматриваемой выше теореме МН ⊥ АВ (наклонная прямой). Таким образом, МН и есть кратчайший отрезок между точкой М и АВ.

МСН – прямоугольный треугольник, поскольку МС ⊥ СН. А значит, можно применить теорему Пифагора:

теорема о трёх перпендикулярах

Длина искомого отрезка найдена.

Полезное видео: доказательство теоремы о трех перпендикулярах

 

Полезное видео: задача на теорему о трех перпендикулярах

Вывод

Таким образом, мы узнали, что такое теорема о трех перпендикулярах, научились ее доказывать, увидели, каким образом она может быть применена в реальных задачах. Кроме того, мы повторили ключевые вопросы планиметрии. Теорема о трех перпендикулярах является одной из важнейших теорем стереометрии, без которой невозможно решение почти не одной задачи.

Вам помогла статья?
Голосовать ПРОТИВГолосовать ЗА
Пока оценок нет
Загрузка...
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить